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Methods of calculating eigensolution sensitivity have long been divided into
two categories: the modal methods and the direct methods. This paper presents
a uni®ed theory for the calculation of derivatives of eigenvalues and
eigenvectors, where the most general case, non-defective eigenproblems with
repeated roots, is considered. The intrinsic relation between these two methods
is exposed. The present modal method is shown to be actually the asymptotic
expansion of a special direct method. A numerical example is given to verify
the validity of the presented formulae, and the issue of computational e�ciency
is addressed.
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1. INTRODUCTION

Calculation of eigensolution sensitivity plays an important role in the ®eld of
dynamics. The derivatives of eigenvalues and eigenvectors, which characterize
the tendency of variation for frequencies and mode shapes with respect to design
parameters, provide guidance in system identi®cation, optimization and control.
With the progress in structural dynamics, many algorithms for computing
eigensolution sensitivity have been proposed during the recent two decades.
It is well known that the main dif®culty of this problem lies in solving

the eigenvector derivatives governed by singular matrix equations. Corres-
pondingly, the various methods previously developed have been divided into two
categories: the modal expansion methods and the direct methods. Several review
papers [1±3] have excellently documented these methods, and comparisons of
computational ef®ciency were also made in other literature. Brie¯y mentioned
below are some algorithms believed to be pertinent to this paper, which is by no
means a thorough survey.
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Fox and Kapoor [4] were the ®rst to propose a simple modal method to
compute the eigensolution sensitivity, where the exact eigenvector derivatives
were expressed in terms of the full eigenvectors of the system. Juang et al. [5]
proved the existence of the eigenvector derivatives associated with repeated
eigenvalues for non-defective systems, and established a set of formulae for
eigenvector derivatives also by using modal expansion. Since obtaining the full
eigenvectors a priori cannot be the practical case and, usually, only a subset of
them is known, Wang [6] developed a modi®ed method to improve the accuracy
of the truncated modal expansion by adding a static correction term. AkguÈ n [7]
presented a family of modal methods, including Fox and Kapoor's method and
the modi®ed modal method as special cases, to compute the eigenvector
derivatives. When the higher order modal methods in the family are used, higher
order corrections (relative to the static correction) can be expected to
compensate for the information lost due to the exclusion of higher order
eigenvectors. Bernard and Bronowick [8] improved the modal method to allow
computation of derivatives of eigenvectors with repeated eigenvalues and
repeated eigenvalue derivatives, and at the end of their paper they suggested
using Wang's technique to increase accuracy. Lin and Lim [9] extended Wang's
algorithm to systems with rigid body modes by means of frequency shifting. Yu
et al. [10] examined the ef®ciency of some modal expansion methods through
numerical examples. Also worthy of mentioning is the work by Zhang and Zerva
[11, 12], where the iterative procedure essentially is based upon the modal
expansion expression.
On the other hand, it was not until Nelson [13] presented his powerful

algorithm preserving the band property of system matrices that the direct
methods became competitive. In his method, a particular solution of an
eigenvector derivative is solved by removing the singularity of the governing
equation, i.e., a non-singular version of the governing equation is obtained by
eliminating certain columns and rows of the singular coef®cient matrix. The
homogeneous solution of the eigenvector derivatives can then be solved by
employing the eigenvectors' gauge condition. Mills-Curran [14] produced an
extension to Nelson's method to deal with the repeated eigenvalue case for self-
adjoint systems. Furthermore, Zhang and Wang [15] derived a direct method for
computing eigenvector derivatives for the case in which repeated eigenvalues
with repeated ®rst order derivatives are present. Similar work was done by
Friswell [16], where an in-depth discussion of the continuity of eigenvalues and
eigenvectors was given.
This paper aims at developing a uni®ed theory for the direct methods and the

modal methods. The mathematical expression of the problem is given in the next
section. Herein we are concerned with the calculation of eigensolution sensitivity
associated with repeated eigenvalues for general non-defective systems. In the
third section, an algorithm along similar lines as the previously developed direct
methods is derived. It is shown that after pre-multiplying an arbitrary particular
solution of the eigenvector derivatives by a so-called projection matrix [17], one
will obtain a uniquely determined particular solution which falls into the
complementary space with respect to the space where the homogeneous solution
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falls. Since the latter space is spanned by the linearly independent eigenvectors to
be differentiated, such a decomposition of the eigenvector derivatives enables us
to present a most general modal method in the fourth section. The intrinsic
relation between the direct method and the modal expansion method is
explained. In the ®fth section a numerical example is given, for which the
computational ef®ciency will be discussed. Concluding remarks are given in the
last section.

2. PROBLEM DEFINITION

Given N6N general complex matrices A(p) and B(p) which are continuous
functions of a real parameter p, where B(p) is non-singular, the right and left
eigenproblems associated with A(p) and B(p) are de®ned as

A�p�x�p� � l�p�B�p�x�p�, AT�p�y�p� � l�p�BT�p�y�p�: �1a, b�
This paper is concerned with the derivatives of eigenvalues and eigenvectors at
p= p0. Particularly, only the case that the eigenproblems (1a) and (1b) are non-
defective is considered. Let the complete eigensolutions of (1a) and (1b) be
represented by

LLL�p� � diag�l1�p�, l2�p�, . . . , lN�p��, �2a�

X�p� � �x1�p�jx2�p�j � � � jxN�p��, Y�p� � �y1�p�jy2�p�j � � � jyN�p��, �2b�
where the eigenvalues li(p) are so arranged that 0E |l1(p0)|E |l2(p0)|E � � �
E |lN(p0)|.
It is well known that an eigenvector given by equations (1a) or (1b) is

uncertain to the extent of a non-zero constant multiplier, and gauge condition
should be imposed to result in unique eigenvectors and thereafter, for one to
solve the corresponding eigenvector derivatives. However, as pointed out by
Murthy and Haftka [2], confusion exists in previous literature regarding this
point. For a non-self-adjoint system, one can no longer use

xTi �p�B�p�xi�p� � 1 �3�
which may fail even if B(p) is real, for example, if B(p) is skew-symmetric. In this
paper an alternative condition is adopted which will be generally valid,

x�i �p�xi�p� � 1, �4a�
where ``*'' denotes a conjugate-transpose. For the purpose of comparison, the
results corresponding to condition (3) will also be given. Care should be taken
when using condition (4a), at that time we still have uncertainty for an
eigenvector to the extent of a unit complex factor, and a complementary
condition is proposed by setting

xiq�p� � jxiq�p�j, �4b�
where, for an arbitrary eigenvector xi(p), the subscript q is to be chosen so that
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jxiq�p0�j � max
j�10N

jxij�p0�j:

In other words, for an arbitrary eigenvector xi(p), its qth component is set to be
a real number, where q is to be chosen so that xiq(p0) has the largest modulus
among all the components of xi(p0). Since A(p) and B(p) and hence the
eigenvectors are continuous, in the vicinity of p= p0 the eigenvector component
xiq(p) (corresponding to the differentiated eigenvector component xiq(p0)) must
be non-zero and therefore can be set to a real number by multiplying the
eigenvector by a complex factor of unit modulus. After the right eigenvectors
have been determined by using either one of the above gauge conditions,
imposing the following biorthonormalization condition will uniquely determine
the left eigenvectors:

YT�p�B�p�X�p� � IN, �5�

where IN is the Nth order identity matrix. Clearly, for self-adjoint eigenproblems,
only using equation (5) is suf®cient to render the eigenvectors unique because in
that case the left and right eigenvectors are the same.
Suppose that at p= p0 one is given an arbitrary n-fold (1E nEN) eigenvalue

ll � ll�1 � � � � � lh �def l0, jl0je0, hÿ l� 1 � n, �6�

with corresponding gauged eigenvector subsets X̂U � �x̂ljx̂l�1j � � � jx̂h� and ŶU �
�ŷljyl�1j � � � jŷh�; hereafter ``(p0)'' is omitted for variables evaluated at p= p0. Our
task is to solve the derivatives of this eigensolution. When n> 1, i.e., the
eigenvalue to be differentiated is repeated, the corresponding right and left
eigenvectors are both degenerate and, mathematically speaking, for any non-
singular n6 n matrices a and b, XU= X̂Ua and ŶU=YUb will also be the right
and left eigenvector subsets. However, it was concluded in previous literature
that, if the derivatives of the repeated eigenvalue are all distinct, under proper
gauge conditions (such as those given by equations (3) or (4a) and (4b), and (5))
only speci®c XU and YU corresponding to unique a and b are differentiable and
thus have derivatives. Notice that condition (5) imposes a restriction on a and b:

bTa � In:

Let LLLU(p), XU(p) and YU(p) denote the continuously differentiable subsets of the
eigenvalues and the corresponding right and left eigenvectors, respectively.
Taking the dth partial derivative of A(p)XU(p)=B(p)XU(p)LLLU(p) and letting
p! p0, one has

A
�
X
�d�
U � Fd, �7�

where
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A
� �def Aÿ l0B, Fd �def

Xd
k�1

d!

k!�dÿ k�!
Xk
j�1

k!

j!�kÿ j�!B
�kÿj�X�dÿk�U LLL�j�U ÿ A

� �k�
X
�dÿk�
U

" #
,

A
� �d� �def A�d� ÿ l0B�d�, LLLU � l0In, d � 1, 2, . . . , �8�
and where the parenthesized superscript ``(d)'' represents the dth partial
derivative. The eigenvalue and eigenvector derivatives to be solved are governed
by equation (7) and the eigenvectors' gauge condition.

3. A DIRECT METHOD WITH BIORTHOGONAL DECOMPOSITION

3.1. BIORTHOGONAL DECOMPOSITION OF EIGENVECTOR DERIVATIVES

Equation (5) results in

IN � BXYT � XYTB: �9�
De®ne

LLLV � diag�l1, . . . , llÿ1, lh�1, . . . , lN�,
XV � �x1j � � � jxlÿ1jxh�1j � � � jxN�, YV � �y1j � � � jylÿ1jyh�1j � � � jyN�,

which are the complementary subsets with respect to the known eigensolution
LLLU, X̂U and ŶU. Then one has

IN � B�X̂UŶ
T

U � XVY
T
V� � �X̂UŶ

T

U � XVY
T
V�B,

which yields

R�l0� �def IN ÿ BX̂UŶ
T

U � BXVY
T
V, L�l0� �def IN ÿ X̂UŶ

T

UB � XVY
T
VB: �10a, b�

Clearly, under the biorthonormalization condition (5), matrices R(l0) and L(l0)
remain invariant though the eigenvector subsets X̂U and ŶU are degenerate. In
mechanics terminology, R(l0) and L(l0) are often referred to as the right and left
projection matrices [17].
Notice that the column vectors of X̂U and ŶU span the null spaces of matrices

AÊ and AÊ T, respectively, and hence the rank of AÊ is m �def Nÿ n. The singular
matrix equation (7) is consistent if and only if

Ŷ
T

UFd � 0 �or equivalently, YT
UFd � 0�: �11�

Provided that condition (11) is satis®ed, the solution set of equation (7) is given
by

X
�d�
U � XUSd � ~X

�d�
U : �12�

In the above equation, Sd is an n6 n coef®cient matrix to be determined, and
XUSd represents the homogeneous solution part which is the linear combination
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of the differentiated eigenvectors. The particular solution part in equation (12),
~X
�d�
U , can be written as [18]

~X
�d�
U � C�l0�Fd, 8C�l0� 2 A

� f1g, �13�
where AÊ {1}�def{C(l0)|AÊ C(l0)AÊ =AÊ , C(l0)2CN6N}, which is referred to as the
generalized 1-inverse set of matrix AÊ [18]. Notice that the generalized 1-inverse of
AÊ , C(l0), is not unique, nor is the above particular solution ~X

�d�
U .

Let G(l0)�defL(l0)C(l0)R(l0), 8C(l0)2AÊ {1}. In virtue of

A
�
XV � �Aÿ l0B�XV � BXV�LLLV ÿ l0Im�,

A
� TYV � �AT ÿ l0BT�YV � BTYV�LLLV ÿ l0Im�

it is easy to verify that

G�l0� � XVY
T
VBC�l0�BXVY

T
V

� XV�LLLV ÿ l0Im�ÿ1YT
VA
�
C�l0�A� XV�LLLV ÿ l0Im�ÿ1YT

V

� XV�LLLV ÿ l0Im�ÿ1YT
V �

XN
j�1

j6�l0h

xjy
T
j

lj ÿ l0
�14�

and hence

A
�
G�l0�A� � A

�
XV�LLLV ÿ l0Im�ÿ1YT

VA
�

� BXVY
T
VA
� � R�l0�A�

� �IN ÿ BX̂UŶ
T
U�A

� � A
�
: �15�

Obviously G(l0) is an invariant generalized 1-inverse of AÊ . In the following part
of this paper the notation ~X

�d�
U is assigned to the special particular solution given

by

~X
�d�
U � G�l0�Fd �16�

i.e.,

~X
�d�
U � L�l0�C�l0�R�l0�Fd �17a�

� XV�LLLV ÿ l0Im�ÿ1YT
VFd, �17b�

which is uniquely determined and falls into the space spanned by the column
vectors of XV. The biorthonormal condition then yields

YT
UB

~X
�d�
U � 0: �18�

Such a biorthogonal decomposition of the eigenvector derivatives simpli®es the
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subsequent derivations as well as the practical computations and, more
importantly, exposes the intrinsic relation between the so-called direct methods
and the modal expansion methods. Actually, the major difference between these
two kinds of methods is in the computation of ~X

�d�
U . As one will see later on, ~X

�d�
U

can be either solved by using equation (17a) (direct method, i.e., to directly solve
the generalized 1-inverse from known information), or solved by using equation
(17b) or its asymptotic expansion (modal method).

3.2. A DIRECT METHOD FOR GENERAL NON-SELF-ADJOINT SYSTEMS

First, the differentiable eigenvector subsets XU and YU need to be determined
from the given eigenvectors X̂U and ŶU. Setting d=1 in equations (11) and (8),
after simple derivations one has

LLL�1�U � YT
UA
� �1�XU: �19�

In virtue of XU � X̂Ua, YU � ŶUb and bTa= In, one obtains an n-order standard
eigenproblem and its adjoint problem as

D1a � aLLL�1�U , DT
1b � bLLL�1�U , �20a, b�

where D1 �def Ŷ
T

UA
� �1�

X̂U. Equations (20a) and (20b) give the ®rst order derivatives
of the repeated eigenvalue, and the eigenvector matrices a and b will designate
the differentiable right and left eigenvector subsets XU and YU. It is still worth
mentioning the case in which repeated eigenvalues arise in eigenproblems (20a)
and (20b). In that case some eigenvectors of equations (20a) and (20b) are
degenerate and one will still be unable to determine the differentiable
eigenvectors. In fact, eigensolution sensitivity re¯ects the eigensolution
perturbation due to system parameter perturbation. Equal eigenvalue derivatives
show that the perturbed eigenvalues are still repeated and they fail to separate
the originally degenerate eigenvector subspace. As demonstrated by Zhang and
Wang [15] and Friswell [16], in that case higher order eigenvalue derivatives need
to be solved until all the perturbed eigenvalues become distinct. In this paper
only the case in which all the eigenvalues of equations (20a) and (20b)
are distinct is considered, i.e., l�1�j 6� l�1�k ( Xj, k= 1, . . . , n, j 6� k). Then a and
b are both non-degenerative and the differentiable eigenvectors XU and YU can
be uniquely determined by imposing the gauge conditions (3), (4) and (5).
Next to be solved is the particular solution ~X

�1�
U . With d=1 in equations (16)

and (8) and recalling equation (19), one has

~X
�1�
U � G�l0�F1 � ÿG�l0��IN ÿ BXUY

T
U�A

� �1�XU � ÿG�l0�A� �1�XU

� ÿL�l0�C�l0�R�l0�A� �1�XU: �21�
It was Nelson [13] who ®rst proposed an ef®cient algorithm for extracting a
particular solution of the eigenvector derivative by exploiting the property that
the null space of AÊ is known a priori, and then a direct method for calculating
the eigenvector derivatives was completed by employing the eigenvector's gauge
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condition. Mills-Curran [14] extended Nelson's method to a self-adjoint system
with repeated eigenvalues. A similar algorithm for solving a particular solution
for a non-self-adjoint system with repeated eigenvalues was given by Tang et al.
[19]. The algorithm is now modi®ed to yield the particular solution in the form
of (21):
(1) Find n linearly independent rows in XU and eliminate the corresponding

n columns of matrix AÊ and n rows of the right-hand side ÿR(l0)AÊ (1)XU.
(2) Find n linearly independent rows in YU and eliminate the corresponding n

rows of matrix AÊ . It was proved [19] that the remainder of AÊ must form a
(Nÿ n)6 (Nÿ n) non-singular coef®cient matrix.
(3) Solve the (Nÿ n) non-singular simultaneous equations and then ®ll the

entries corresponding to the eliminated rows with zeros.
(4) Pre-multiply the obtained result by L(l0) and one then has the solution

given by equation (21).
Finally, one needs to ®nd the coef®cient matrix S1 in the homogeneous

solution part. With d=2 in equations (11) and (8), after simple calculations one
has

LLL�2�U � YT
U�A

� �2�XU � 2A
� �1�X�1�U ÿ 2B�1�XULLL

�1�
U ÿ 2BX

�1�
U LLL�1�U �:

Setting d=1 in equation (12) and inserting it into the above equation, recalling
equations (21) and (18), one obtains

S1LLL
�1�
U ÿ LLL�1�U S1 � 1

2LLL
�2�
U � 1

2Y
T
U�A

� �2� ÿ 2A
� �1�GA

� �1� ÿ 2B�1�XUY
T
UA
� �1��XU: �22�

Therefore, the off-diagonal elements of matrix S1 and the second order
derivatives of the repeated eigenvalues are, respectively,

S1jk �
yTj �A

�
2 ÿ 2A

� �1�GA
� �1� ÿ 2B�1�XUY

T
UA
� �1��xk

2�l�1�k ÿ l�1�j �
, j 6� k, j, k � 1, 2 . . . , n,

�23�

l�2�j � yTj �A
�
2 ÿ 2A

� �1�GA
� �1� ÿ 2B�1�XUY

T
UA
� �1��xj, j � 1, 2, . . . , n, �24�

where temporarily we let yj and xj represent the jth column vectors of XU and
YU, respectively. The diagonal elements of matrix S1 will be solved by using the
gauge conditions given by equation (3) or (4). Differentiating equations (3) and
(4a) with respect to p and then letting p! p0 results in

xTi �B� BT�x�1�i � ÿxTi B�1�xi, Re�x�i x�1�i � � 0: �25a, b�

Let x
�1�
i denote the ith column vector ~X

�1�
U . Recalling equations (12), (3) and (4a),
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from equations (25a) and (25b) one has, for i=1, 2,� � �, n,

S1ii � ÿ 1

2

"
xTi B

�1�xi � xTi �B� BT�~x�1�i �
Xn
j�1
j 6�i

xTi �B� BT�xjS1ji

#
, �26a�

Re�S1ii� � ÿRe

 
x�i ~x

�1�
i �

Xn
j�1
j 6�i

x�i xjS1ji

!
: �26b�

Notice that in equation (26b) corresponding to condition (4a), only the real parts
of S1ii can be solved. Indeed, this is due to the fact that condition (4a) can only
gauge the modulus of a differentiated eigenvector. Recalling that the
complementary condition (4b) requires that the maximum component of
xi(p), denoted by xiq(p), remains real in the vicinity of p= p0, which implies
that x

�1�
iq is also real, one can obtain the imaginary part of S1ii as

Im�S1ii� � ÿIm
 

~x
�1�
iq �

Xn
j�1
j 6�i

xjqS1ji

!
=xiq: �27�

Now the homogeneous and particular solution parts of equation (12) with
d=1 are both solved; see equation (18). A direct method with biorthogonal
decomposition is then completed.

4. MODAL METHOD OBTAINED BY ASYMPTOTIC EXPANSION

In virtue of equations (12), (21) and (17b), the ®rst order eigenvector
derivatives can be alternatively expressed as

X
�1�
U � ~X

�1�
U � XUS1 � ÿG�l0�A� �1�XU � XUS1

� XV�LLLV ÿ l0Im�ÿ1YT
VA
� �1�XU � X̂UaS1, �28�

which coincides with the modal expansion result given by Juang [5]. In fact, the
only difference between the direct method presented in the preceding section and
the modal expansion method is the solving strategy for the particular solution
~X
�1�
U which falls into the space spanned by the column vectors of XV. In view of

modal expansion, an exact solution for the eigenvector derivatives requires that
all the eigenvectors of the original system are known a priori, which cannot be
the case in practice. This has resulted in some approximate techniques by means
of modal truncation and then compensating. In this section, an asymptotic
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expansion of the invariant generalized 1-inverse G(l0) is derived and then used
to obtain approximate eigenvector derivatives. It is shown that, for the
expansion to be convergent, one needs to know all the lower order eigenvectors
at least up to the one corresponding to lh+1 (see equation (6) for the de®nition
of h).
Suppose equation (1) has r-fold (re 0) zero eigenvalue, and the corresponding

right and left eigenvector subsets are denoted by XR and YR. Recalling equation
(14), analogously one can obtain

G�0� �
�IN ÿ XRY

T
RB�C�0��IN ÿ BXRY

T
R�,XN

j�r�1

xjy
T
j

lj
,

8>><>>: �29�

where the ®rst expression suggests a practical method for the computation
of G(0) which is often called the elastic ¯exibility matrix in mechanics
terminology [17], and the second expression will be used in the following
derivation. From the biorthonormalization condition (5), it is easy to verify that,
for k=0, 1, 2, � � �,

�G�0�B�kG�0� �
XN
j�r�1

xjy
T
j

lk�1j

:

Generally, in a practical dynamic analysis, the number of degrees of freedom
of the system is very large but the eigenvalue l0 of interest often falls into the
lower-frequency segment. Therefore, one can always ®nd an integer g(l0)> h
such that 8j> g(l0), |l0/lj|< 1. Recalling equation (14), one can express G(l0) in
terms of a convergent power series,

G�l0� �
XN
j�1

j 6�l0h

xjy
T
j

lj ÿ l0
�
Xg�l0�
j�1

j 6�l0h

xjy
T
j

lj ÿ l0

�
XN

j�g�l0��1

xjy
T
j

lj
1� l0

lj
� l0

lj

� �2

� � � � � l0
lj

� �k

� � � �
" #

� Hÿ1 �H0 �H1 �H2 � � � � �Hk � � � � , �30�

where
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Hÿ1 �
Xg�l0�
j�1

j 6�l0h

xjy
T
j

lj ÿ l0
� ÿXRY

T
R

l0
�
Xg�l0�
j�r�1
j 6�l0h

xjy
T
j

lj ÿ l0
,

H0 �
XN

j�g�l0��1

xjy
T
j

lj
�
XN
j�r�1

xjy
T
j

lj
ÿ
Xg�l0�
j�r�1

xjy
T
j

lj
� G�0� ÿ

 
XUY

T
U

l0
�
Xg�l0�
j�r�1
j 6�l0h

xjy
T
j

lj

!
,

H1 � l0
XN

j�g�l0��1

xjy
T
j

l2j
� l0

XN
j�r�1

xjy
T
j

l2j
ÿ l0

Xg�l0�
j�r�1

xjy
T
j

l2j

� �l0G�0�B�G�0� ÿ XUY
T
U

l0
� l0

Xg�l0�
j�r�1
j6�l0h

xjy
T
j

l2j

0BB@
1CCA,

Hk � lk0
XN

j�g�l0��1

xjy
T
j

lk�1j

� lk0
XN
j�r�1

xjy
T
j

lk�1j

ÿ lk0
Xg�l0�
j�r�1

xjy
T
j

lk�1j

� �l0G�0�B�kG�0� ÿ XUY
T
U

l0
� lk0

Xg�l0�
j�r�1
j 6�l0h

xjy
T
j

lk�1j

0BB@
1CCA:

Let Ek be the partial sum of the series; one has

Ek �
Xk
j�ÿ1

Hk � ÿXRY
T
R

l0
ÿ �k� 1�XUY

T
U

l0
�
Xk
j�0
�l0G�0�B�jG�0�

�
Xg�l0�
j�r�1
j 6�l0h

xjy
T
j

1

lj ÿ l0
ÿ 1

lj
� l0
l2j
� l20
l3j
� � � � � lk0

lk�1j

 !" #

� ÿXRY
T
R

l0
ÿ �k� 1�XUU

T
U

l0
�
Xk
j�0
�l0G�0�B�jG�0� �

Xg�l0�
j�r�1
j 6�l0h

xjy
T
j

lj ÿ l0

l0
lj

� �k�1
: �31�

Hence, provided all the lower order eigenvectors (up to the one corresponding to
lg�l0�� are known, the kth approximation for the particular solution of the
eigenvector derivatives has the form
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~X
�1�
U 1Ek�ÿA� �1�XU�

� XRY
T
RA
� �1�XU

l0
� �k� 1�XULLL

�1�
U

l0
�
Xk
j�0
�l0G�0�B�jG�0��ÿA� �1�XU�

�
Xg�l0�
j�r�1
j 6�l0h

xjy
T
j

lj ÿ l0

l0
lj

� �k�1
�ÿA� �1�XU�: �32�

After obtaining the approximate particular solution of the eigenvector
derivatives, one can solve for the homogeneous solution part by using equations
(22)±(27) derived in the preceding section. Notice that with suf®ciently large k,
the error or of the present modal method will diminish to zero.
The present modal method virtually covers all the previously developed

modal-expansion based methods as special cases. If the eigenvalue to be
differentiated is a distinct one, combining equations (32), (26a) and (12) and
letting n=1 one can get the so-called family of modal methods proposed by
AkguÈ n [7]. As noted by AkguÈ n [7], if one lets k=ÿ, i.e., excluding all the higher
eigenvectors without compensating, one will have the truncated modal method
result. If one lets k=0, one can get Wang's modi®ed modal method (or referred
to as the modal acceleration method). Higher order compensation can be
achieved if one applied larger k. On the other hand, no additional effort is
needed if the original system has rigid-body modes. Equation (32) also implies a
scheme of explicit iteration, which is similar to the iterative procedure proposed
by Zhang and Zerva [11, 12]. In summary, the present modal method, which can
be used to treat any non-defective eigenproblem with repeated eigenvalues, is the
most general modal method so far developed.

5. ILLUSTRATIVE EXAMPLE

In this section a numerical example is given to demonstrate the validity of the
presented formulae. The direct (exact) and modal (approximate) methods are
compared, and the issue of computational ef®ciency is addressed. All results are
obtained by using MATLAB5.1.
Suppose one is given the following system,

A�p0� �

1 0 0 0 ÿ1 1 0 1
0 1 0 0 ÿ1 1 0 1
0 0 1 0 ÿ1 1 0 1
0 0 0 10 ÿ1 5 0 0
2 6 3 4 10 3 0 10
1 1 1 1 1 10 0 10
20 0 0 0 0 0 q 20
3 7 4 5 11 13 0 20

266666666664

377777777775
, B�p0� � I8,
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A�1��p0� �

0 1 0 0 0 0 0 0
ÿ1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 ÿ1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 ÿ1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 ÿ1 0

266666666664

377777777775
,

B�i��p0� � 0, i � 1, 2, . . . ; A�i��p0� � 0, i � 2, 3, . . . ,

where q is an adjustable parameter and at this moment is set to q=5. The
original system has a two-fold eigenvalue l0=1�0, whose corresponding
biorthonormalized right and left eigenvectors are, respectively,

X̂U �

ÿ2�1192650eÿ 01 ÿ2�2191360eÿ 01
6�1062716eÿ 03 7�8322447eÿ 02
2�1623978eÿ 02 ÿ2�2191360eÿ 01
1�8419626eÿ 03 3�6550475eÿ 03
1�6577663eÿ 02 3�2895428eÿ 02
ÿ8�0758984eÿ 17 ÿ2�1051200eÿ 16
9�7674421eÿ 01 9�4509086eÿ 01
1�6577663eÿ 02 3�2895428eÿ 02

266666666664

377777777775
,

ŶU �

ÿ4�2817296e� 00 ÿ2�2130128eÿ 01
3�1086245eÿ 15 3�3307127eÿ 00
4�2817296e� 00 ÿ3�1094114e� 00
8�0987389eÿ 16 ÿ4�7536980eÿ 17
1�2173526eÿ 15 ÿ5�6939838eÿ 16
6�8585474eÿ 16 ÿ1�4599762eÿ 15

0 0
ÿ8�5798454eÿ 16 4�4007863eÿ 16

266666666664

377777777775
,

The derivatives of this eigenpair will be computed by using the two different
approaches proposed in this paper.
First, the direct method developed in the third section is used. In the direct

method, the above information is suf®cient for sensitivity analysis, i.e., only the
eigenvalues and the eigenvectors to be differentiated are needed in this approach.
Using equations (20)±(27) in sequence, one can obtain the differentiable right
and left eigenvectors,
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XU �
ÿ2�1422098eÿ 01� 1�7469047eÿ 02i ÿ2�1422098eÿ 01ÿ 1�7469047eÿ 02i

8�3370652eÿ 02ÿ 7�5052202eÿ 02i 8�3370652eÿ 02� 7�5052202eÿ 02i

ÿ2�4061602eÿ 01� 2�5168368eÿ 01i ÿ2�4061602eÿ 01ÿ 2�5168368eÿ 01i

3�7146635eÿ 03ÿ 1�9410052eÿ 03i 3�7146635eÿ 03� 1�9410052eÿ 03i

3�3431972eÿ 02ÿ 1�7469047eÿ 02i 3�3431972eÿ 02� 1�7469047eÿ 02i

ÿ2�1680813eÿ 16� 1�3719260eÿ 16i ÿ2�1680813eÿ 16ÿ 1�3719260eÿ 16i

9�0394506eÿ 01 9�0394506eÿ 01

3�3431972eÿ 02ÿ 1�7469047eÿ 02i 3�3431972eÿ 02� 1�7469047eÿ 02i

266666666666664

377777777777775
,

YU �
ÿ2�4289664e� 00� 2�4085287e� 00i ÿ2�4289664e� 00ÿ 2�4085287e� 00i

1�7411601e� 00ÿ 1�9622168eÿ 01i 1�7411601e� 00� 1�9622168eÿ 01i

6�8780633eÿ 01ÿ 2�2123070e� 00i 6�8780633eÿ 01� 2�2123070e� 00i

4�1269812eÿ 16ÿ 4�5029809eÿ 16i 4�1269812eÿ 16� 4�5029809eÿ 16i

3�6003785eÿ 16ÿ 6�4752511eÿ 16i 3�6003785eÿ 16� 6�4752511eÿ 16i

ÿ3�9267073eÿ 16ÿ 2�9770255eÿ 16i ÿ3�926707eÿ 16� 2�9770255eÿ 16i

0 0

ÿ2�3348606eÿ 16� 4�5408874eÿ 16i ÿ2�3348606eÿ 16ÿ 4�5408875eÿ 16i

266666666666664

377777777777775
,

and then the ®rst and second order eigenvalue derivatives,

LLL�1�U �
0�3460869565217411� 0�3010956677440148i

0�3460869565217411ÿ 0�3010956677440148i
� �

,

LLL�2�U �
ÿ1�993970323662362� 1�629390633778691i

ÿ1�993970323662362ÿ 1�629390633778691i
� �

,

and ®nally the right eigenvector derivatives
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X
�1�
U �
4�2046858eÿ 01� 9�1150201eÿ 02i 4�2046858eÿ 01ÿ 9�1150201eÿ 02i

ÿ9�9724949eÿ 02ÿ 1�7656000eÿ 01i ÿ9�9724949eÿ 02� 1�7656000eÿ 01i

1�1328952e� 00� 7�4747461eÿ 01i 1�1328952e� 00ÿ 7�4747461eÿ 01i

ÿ2�1527791eÿ 01� 1�0081471eÿ 02i ÿ2�1527791eÿ 01ÿ 1�0081471eÿ 02i

7�0603519eÿ 02ÿ 7�6232028eÿ 02i 7�0603519eÿ 02� 7�6232028eÿ 02i

3�5387175eÿ 01� 1�7033024eÿ 02i 3�5387174eÿ 01ÿ 1�7033024eÿ 02i

1�9769911eÿ 01 1�9769911eÿ 01

ÿ4�4603782eÿ 01ÿ 7�6668051eÿ 02i ÿ4�4603782eÿ 01� 7�6668051eÿ 02i

266666666666664

377777777777775
:

To verify the obtained eigenvalue and eigenvector derivatives, they are used to
approximate the eigensolution of the perturbed matrix pair (A(p), B(p)). In fact,
LLLU(p) and XU(p) can be approximated by the truncated Taylor series in the
following manner:

LLLU�p�japprox1l0I2 � eLLL�1�U �
e2

2
LLL�2�U , XU�p�japprox1XU � eX�1�U ,

where e �def pÿ p0. Figure 1 shows the difference between the exact eigensolution
and the approximate one obtained by way of sensitivity analysis. Since the
original repeated eigenvalue splits into a pair of complex conjugated eigenvalues,
only the results of one perturbed eigenvalue and its eigenvector are plotted here.

10–7

10–6

10–5

10–4

10–3

10–2

10–1

10–8

10–210–1 10–3 10–4

= p–p0

Figure 1. Difference between the exact perturbed eigensolution and the approximate one
obtained by sensitivity analysis: - - - - , |l(p)exactÿ l(p)approx|/|l(p)exact|; ÐÐ , kx(p)exactÿ
x(p)approxk2/kx(p)exactk2.
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Clearly, the difference diminishes rapidly as e decreases. The validity of the
presented direct method is then justi®ed.
The modal method, on the other hand, requires the knowledge of all the lower

order eigenvectors at least up to the one corresponding to lh+1 (the eigenvalue
next to l0). Actually, in this example the complete eigenvalue set of the original
system is

LLL � diag�0�0, 1�0, 1�0, 1�6028948, q, 8�321032622�5437262i, 32�7550401�:

Here it is assumed only the four lowest order eigenvectors are available, and
®rstly it is assumed q=5 is the lowest unavailable eigenvalue. The ®rst and
fourth eigenvectors are, respectively,

x1 �

2�5684747eÿ 01
2�5684747eÿ 01
2�5684747eÿ 01
ÿ2�0215643eÿ 01
1�8182625eÿ 01
4�4067810eÿ 01
5�1770371eÿ 01
ÿ5�1569933eÿ 01

266666666664

377777777775
, y1 �

ÿ4�4090189eÿ 16
ÿ1�5153578eÿ 15
1�7998107eÿ 15
2�0687479eÿ 16
8�7857737eÿ 01
8�7857737eÿ 01

0
ÿ8�7857737eÿ 01

266666666664

377777777775
,

x4 �

ÿ4�2097315eÿ 01
ÿ4�2097315eÿ 01
ÿ4�2097315eÿ 01
1�1328386eÿ 01
3�1675014eÿ 01
ÿ1�2690127eÿ 01
5�5048561eÿ 01
1�8984888eÿ 01

266666666664

377777777775
, y4 �

ÿ1�3849739eÿ 01
ÿ1�9692185e� 00
ÿ5�9617766eÿ 01
7�5664826eÿ 02
2�1040979eÿ 01
9�5470964eÿ 01

0
ÿ4�8634286eÿ 01

266666666664

377777777775
:

Notice the original system has a rigid body mode. Using equations (29)±(32) and
then equations (22)±(27), one can solve for the approximate eigenvector
derivatives. The kth (k=ÿ1, 0, 1, 5) approximation of the right eigenvector
derivatives and the corresponding relative error are, respectively,
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X
�1�
U jk�ÿ1 �
3�9075913eÿ 01� 6�5878510eÿ 02i 3�9075913eÿ 01ÿ 6�5878510eÿ 02i

ÿ8�1568828eÿ 02ÿ 1�7733796eÿ 01i ÿ8�1568828eÿ 02� 1�7733796eÿ 01i

1�0716723e� 00� 7�4790469eÿ 01i 1�0716723e� 00ÿ 7�4790469eÿ 01i

ÿ1�6090894eÿ 01ÿ 1�6625710eÿ 02i ÿ1�6090894eÿ 01� 1�6625710eÿ 02i

7�1089663eÿ 02ÿ 6�8107287eÿ 02i 7�1089663eÿ 02� 6�8107287eÿ 02i

3�3499602eÿ 01� 1�5937830eÿ 02i 3�3499602eÿ 01ÿ 1�5937830eÿ 02i

1�7366558eÿ 01 1�7366558eÿ 01

ÿ4�6442740eÿ 01ÿ 6�9638504eÿ 02i ÿ4�6442740eÿ 01� 6�9638504eÿ 02i

266666666666664

377777777777775
,

errorjk�ÿ1 �
k x�1�2 jk�ÿ1 ÿ x

�1�
2 jexact k2

k x�1�2 jexact k2
� 6�5358385eÿ 02,

X
�1�
U jk�0 �
4�1608745eÿ 01� 8�5626028eÿ 02i 4�1608745eÿ 01ÿ 8�5626028eÿ 02i

ÿ9�6045488eÿ 02ÿ 1�7613975eÿ 01i ÿ9�6045488eÿ 02� 1�7613975eÿ 01i

1�1219471e� 00� 7�4572545eÿ 01i 1�1219471e� 00ÿ 7�4572545eÿ 01i

ÿ2�0956226eÿ 01� 7�9010801eÿ 03i ÿ2�0956226eÿ 01ÿ 7�9010801eÿ 03i

7�0636467eÿ 02ÿ 7�4355391eÿ 02i 7�0636467eÿ 02� 7�4355391eÿ 02i

3�5320655eÿ 01� 1�6397787eÿ 02i 3�5320655eÿ 01ÿ 1�6397787eÿ 02i

1�9409018eÿ 01 1�9409018eÿ 01

ÿ4�4667007eÿ 01ÿ 7�5426651eÿ 02i ÿ4�4667007eÿ 01� 7�5426651eÿ 02i

266666666666664

377777777777775
,

errorjk�0 �
k x�1�2 jk�0 ÿ x

�1�
2 jexact k2

k x�1�2 jexact k2
� 9�8708899eÿ 03,

X
�1�
U jk�1 �
4�1969650eÿ 01� 9�0026313eÿ 02i 4�1969650eÿ 01ÿ 9�0026313eÿ 02i

ÿ9�9000001eÿ 02ÿ 1�7641961eÿ 01i ÿ9�9000001eÿ 02� 1�7641961eÿ 01i

1�1307925e� 00� 7�4700310eÿ 01i 1�1307925e� 00ÿ 7�4700310eÿ 01i

ÿ2�1474295eÿ 01� 9�9567968eÿ 03i ÿ2�1474295eÿ 01ÿ 9�9567968eÿ 03i

7�0595376eÿ 02ÿ 7�5907796eÿ 02i 7�0595376eÿ 02� 7�5907796eÿ 02i

3�5392371eÿ 01� 1�6901918eÿ 02i 3�5392371eÿ 01ÿ 1�6901918eÿ 02i

1�9706044eÿ 01 1�9706044eÿ 01

ÿ4�4599402eÿ 01ÿ 7�6474924eÿ 02i ÿ4�4599402eÿ 01� 7�6474924eÿ 02i

266666666666664

377777777777775
,

errorjk�1 �
k x�1�2 jk�1 ÿ x

�1�
2 jexact k2

k x�1�2 jexact k2
� 1�7818865eÿ 03,
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X
�1�
U jk�5 �
4�2046736eÿ 01� 9�1148497eÿ 02i 4�2046736eÿ 01ÿ 9�1148497eÿ 02i

ÿ9�9723881eÿ 02ÿ 1�7655970eÿ 01i ÿ9�9723881eÿ 02� 1�7655970eÿ 01i

1�1328919e� 00� 7�4747388eÿ 01i 1�1328919e� 00ÿ 7�4747388eÿ 01i

ÿ2�1527793eÿ 01� 1�0081552eÿ 02i ÿ2�1527793eÿ 01ÿ 1�0081552eÿ 02i

7�0603765eÿ 02ÿ 7�6231803eÿ 02i 7�0603765eÿ 02� 7�6231803eÿ 02i

3�5387181eÿ 01� 1�7032985eÿ 02i 3�5387181eÿ 01ÿ 1�7032985eÿ 02i

1�9769809eÿ 01 1�9769809eÿ 01

ÿ4�4603751eÿ 01ÿ 7�6667865eÿ 02i ÿ4�4603751eÿ 01� 7�6667865eÿ 02i

266666666666664

377777777777775
,

errorjk�5 �
k x�1�2 jk�5 ÿ x

�1�
2 jexact k2

k x�1�2 jexact k2
� 2�7161320eÿ 06:

The eigenvector derivatives obtained by the direct method are now referred to as
the exact solution. Only one error index is needed because the two eigenvector
derivatives are complex conjugates. Clearly, when the ®rst unavailable eigenvalue
is q=5, the 5th approximation of the eigenvector derivatives already has
satisfactory accuracy.
The computational ef®ciency of the present direct and modal methods still

needs to be discussed. The advantageous feature of the modal method is
obvious. The most time-consuming steps in the above two methods are solving
G(l0) (in the direct method) and G(0) (in the modal method), respectively.
Observe equations (21) and (32). While the direct method requires solving for
different G(l0) if a number of eigenvectors corresponding to different eigenvalues
are to be differentiated, only one G(0) is needed for the modal method in that
case. The disadvantage of the modal method is the error induced by
approximation. As pointed out in the preceding section, the modal method uses
Ek to approximate the generalized 1-inverse G(l0). With k increasing, Ek will
eventually converge to G(l0). Observing equations (30) and (31), one can ®nd
that the convergence rate of the modal method depends on the ratios of the
differentiated eigenvalue to the unavailable eigenvalues, and primarily depends
on the ratio of the differentiated eigenvalue to the lowest unavailable eigenvalue.
Actually, when k increases, the error between Ek and G(l0) will decrease mainly
at the rate of (l0/lg�l0��1�k+1. This effect is simulated in Figure 2, where we let
the adjustable parameter q in the present numerical example be 2, 5 and 8,
respectively. In each case q is the lowest unavailable eigenvalue, and the
error between Ek and G(l0) is plotted. The error reduces roughly in the order of
(1/q)k+1, in this speci®c example (l0=1�0), and the convergence rate increases
quickly as q increases. The ratios of the differentiated eigenvalue to other
unavailable eigenvalues, on the other hand, have less effect on the convergence
rate. Figure 3 shows different convergence rates corresponding to q=9, 10, 30
which represent different second lowest unavailable eigenvectors. Though q
differs signi®cantly, the convergence rates are roughly the same. In all, the ratio
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l0=lg�l0��1 plays a key role in eigensolution sensitivity calculation. It decides the
convergence rate if the modal method is used, and therefore decides which one
between the direct and modal methods is preferred when a real system is to be
analyzed.

10–6

10–5

10–4

10–3

10–2

10–1

100

10–7

1 2 30–1 4 5

k

q=2

q=5

q=8

Figure 2. Relative error between the exact generalized 1-inverse G(l0) and its kth approxi-
mation Ek, kG(l0)ÿEkk2/kG(l0)k2, versus k (=ÿ1, 0, 1, 2, 3, 4, 5). Here q is the lowest unavail-
able eigenvalue.

10–6

10–5

10–4

10–3

10–2

10–1

10–7

1 2 30–1 4 5

k

q=9

q=10

q=30

Figure 3. Relative error between the exact generalized 1-inverse G(l0) and its kth approxi-
mation Ek, kG(l0)ÿEkk2/kG(l0)k2, versus k (=ÿ1, 0, 1, 2, 3, 4, 5). Here q is the second lowest
unavailable eigenvalue.
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6. CONCLUDING REMARKS

A uni®ed theory for the calculation of eigensolution sensitivity is developed
for general non-defective eigenproblems with repeated roots. A direct method
with biorthogonal decomposition is ®rst presented. The asymptotic expansion of
this direct method then results in a modal-expansion based method. The intrinsic
relation between these two kinds of methods is exposed.
Generally speaking, if only one eigenvalue and its eigenvectors set are to be

differentiated, the direct method should be used as it requires least
computational effort and gives accurate results. When a group of eigenvalues
and their eigenvectors are to be differentiated, the modal method presented in
this paper becomes more and more preferable as the number of (distinct)
eigenvalues to be differentiated increases, provided all the lower order eigen-
vectors are available. The convergence rate of the present modal method is
shown to mainly depend on the ratio of the differentiated eigenvalue to the
lowest unavailable eigenvalue. The error between the approximate modal
method solution and the exact solution diminishes roughly at the rate of
�l0=lg�l0��1�k�1. If the lowest unavailable eigenvalue lg�l0��1 is not close to l0, the
modal method can easily achieve satisfactory accuracy.
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APPENDIX: NOMENCLATURE

A(p) and B(p) parameter-dependent complex matrices
AÊ see equation (8)
AÊ (d) dth derivative of AÊ , see equation (8)
Fd see equation (8)
G(l0) invariant generalized 1-inverse of AÊ

IN Nth order identity matrix
L(l0) left projection matrix corresponding to l0, see equation (10b)
R(l0) right projection matrix corresponding to l0, see equation (10a)
Sd coef®cient matrix in the homogeneous solution part of the

eigenvector derivative
X and Y complete right and left eigenvector sets
XU and YU differentiable right and left eigenvector subsets corresponding to

X̂U and ŶU

X
�d�
U and Y

�d�
U dth derivative of XU and YU

~X
�d�
U particular solution part of the eigenvector derivative, see

equations (13) and (16)
X̂U and ŶU eigenvectors to be differentiated
XV and YV complementary eigenvector subsets with respect to X̂U and ŶU

x(p) and y(p) right and left eigenvectors
LLLU= l0In the n-fold eigenvalue to be differentiated

LLL�d�U dth derivative of LLLU

LLLV complementary eigenvalue subsets with respect to LLLU
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