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Methods of calculating eigensolution sensitivity have long been divided into
two categories: the modal methods and the direct methods. This paper presents
a unified theory for the calculation of derivatives of eigenvalues and
eigenvectors, where the most general case, non-defective eigenproblems with
repeated roots, is considered. The intrinsic relation between these two methods
is exposed. The present modal method is shown to be actually the asymptotic
expansion of a special direct method. A numerical example is given to verify
the validity of the presented formulae, and the issue of computational efficiency
is addressed.
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1. INTRODUCTION

Calculation of eigensolution sensitivity plays an important role in the field of
dynamics. The derivatives of eigenvalues and eigenvectors, which characterize
the tendency of variation for frequencies and mode shapes with respect to design
parameters, provide guidance in system identification, optimization and control.
With the progress in structural dynamics, many algorithms for computing
eigensolution sensitivity have been proposed during the recent two decades.

It is well known that the main difficulty of this problem lies in solving
the eigenvector derivatives governed by singular matrix equations. Corres-
pondingly, the various methods previously developed have been divided into two
categories: the modal expansion methods and the direct methods. Several review
papers [1-3] have excellently documented these methods, and comparisons of
computational efficiency were also made in other literature. Briefly mentioned
below are some algorithms believed to be pertinent to this paper, which is by no
means a thorough survey.
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Fox and Kapoor [4] were the first to propose a simple modal method to
compute the eigensolution sensitivity, where the exact eigenvector derivatives
were expressed in terms of the full eigenvectors of the system. Juang et al. [5]
proved the existence of the eigenvector derivatives associated with repeated
eigenvalues for non-defective systems, and established a set of formulae for
eigenvector derivatives also by using modal expansion. Since obtaining the full
eigenvectors a priori cannot be the practical case and, usually, only a subset of
them is known, Wang [6] developed a modified method to improve the accuracy
of the truncated modal expansion by adding a static correction term. Akgiin [7]
presented a family of modal methods, including Fox and Kapoor’s method and
the modified modal method as special cases, to compute the eigenvector
derivatives. When the higher order modal methods in the family are used, higher
order corrections (relative to the static correction) can be expected to
compensate for the information lost due to the exclusion of higher order
eigenvectors. Bernard and Bronowick [8] improved the modal method to allow
computation of derivatives of eigenvectors with repeated eigenvalues and
repeated eigenvalue derivatives, and at the end of their paper they suggested
using Wang’s technique to increase accuracy. Lin and Lim [9] extended Wang’s
algorithm to systems with rigid body modes by means of frequency shifting. Yu
et al. [10] examined the efficiency of some modal expansion methods through
numerical examples. Also worthy of mentioning is the work by Zhang and Zerva
[11, 12], where the iterative procedure essentially is based upon the modal
expansion expression.

On the other hand, it was not until Nelson [13] presented his powerful
algorithm preserving the band property of system matrices that the direct
methods became competitive. In his method, a particular solution of an
eigenvector derivative is solved by removing the singularity of the governing
equation, i.e., a non-singular version of the governing equation is obtained by
eliminating certain columns and rows of the singular coefficient matrix. The
homogeneous solution of the eigenvector derivatives can then be solved by
employing the eigenvectors’ gauge condition. Mills-Curran [14] produced an
extension to Nelson’s method to deal with the repeated eigenvalue case for self-
adjoint systems. Furthermore, Zhang and Wang [15] derived a direct method for
computing eigenvector derivatives for the case in which repeated eigenvalues
with repeated first order derivatives are present. Similar work was done by
Friswell [16], where an in-depth discussion of the continuity of eigenvalues and
eigenvectors was given.

This paper aims at developing a unified theory for the direct methods and the
modal methods. The mathematical expression of the problem is given in the next
section. Herein we are concerned with the calculation of eigensolution sensitivity
associated with repeated eigenvalues for general non-defective systems. In the
third section, an algorithm along similar lines as the previously developed direct
methods is derived. It is shown that after pre-multiplying an arbitrary particular
solution of the eigenvector derivatives by a so-called projection matrix [17], one
will obtain a uniquely determined particular solution which falls into the
complementary space with respect to the space where the homogeneous solution
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falls. Since the latter space is spanned by the linearly independent eigenvectors to
be differentiated, such a decomposition of the eigenvector derivatives enables us
to present a most general modal method in the fourth section. The intrinsic
relation between the direct method and the modal expansion method is
explained. In the fifth section a numerical example is given, for which the
computational efficiency will be discussed. Concluding remarks are given in the
last section.

2. PROBLEM DEFINITION

Given N x N general complex matrices A(p) and B(p) which are continuous
functions of a real parameter p, where B(p) is non-singular, the right and left
eigenproblems associated with A(p) and B(p) are defined as

A(p)x(p) = 2(p)B(p)x(p), AT (p)y(p) = 4(p)B" (P)¥(p). (1a, b)

This paper is concerned with the derivatives of eigenvalues and eigenvectors at
p = po. Particularly, only the case that the eigenproblems (1a) and (1b) are non-
defective is considered. Let the complete eigensolutions of (la) and (1b) be
represented by

A(p) = diag(41(p), 22(p), - > An(p)), (2a)
X(p) = xi@)2 ()] - - Ixn(p)),  Y(p) = (y1(P)y2()] - - lyn(p)), (2b)

where the eigenvalues A,(p) are so arranged that 0 < |A;(po)| < |4a(po)l < - --
< |[An(po)l-

It is well known that an eigenvector given by equations (la) or (1b) is
uncertain to the extent of a non-zero constant multiplier, and gauge condition
should be imposed to result in unique eigenvectors and thereafter, for one to
solve the corresponding eigenvector derivatives. However, as pointed out by
Murthy and Haftka [2], confusion exists in previous literature regarding this
point. For a non-self-adjoint system, one can no longer use

x; (P)B(p)xi(p) = 1 (3)

which may fail even if B(p) is real, for example, if B(p) is skew-symmetric. In this
paper an alternative condition is adopted which will be generally valid,

x; (p)xi(p) = 1, (4a)

where “*” denotes a conjugate-transpose. For the purpose of comparison, the
results corresponding to condition (3) will also be given. Care should be taken
when using condition (4a), at that time we still have uncertainty for an
eigenvector to the extent of a unit complex factor, and a complementary
condition is proposed by setting

Xig(p) = |Xig(P)I; (4b)

where, for an arbitrary eigenvector x/p), the subscript ¢ is to be chosen so that
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|Xig(po)| = max [x;(po)|-
J=1~N

In other words, for an arbitrary eigenvector x,(p), its gth component is set to be
a real number, where ¢ is to be chosen so that x;,(po) has the largest modulus
among all the components of x;py). Since A(p) and B(p) and hence the
eigenvectors are continuous, in the vicinity of p = p, the eigenvector component
X;(p) (corresponding to the differentiated eigenvector component x;,(po)) must
be non-zero and therefore can be set to a real number by multiplying the
eigenvector by a complex factor of unit modulus. After the right eigenvectors
have been determined by using either one of the above gauge conditions,
imposing the following biorthonormalization condition will uniquely determine
the left eigenvectors:

Y'(p)B(p)X(p) = Ly, (5)

where I is the Nth order identity matrix. Clearly, for self-adjoint eigenproblems,
only using equation (5) is sufficient to render the eigenvectors unique because in
that case the left and right eigenvectors are the same.

Suppose that at p = p, one is given an arbitrary n-fold (1 < n < N) eigenvalue

def

A=l =-=A = Ao, |}v0|20, h—I[I+1=n, (6)
with corresponding gauged eigenvector subsets )A(U = (X/|X31| - - |X;) and \A(U =
(¥:1¥:1] -« - |¥2); hereafter ““(po)” is omitted for variables evaluated at p = po. Our

task is to solve the derivatives of this eigensolution. When n>1, i.e., the
cigenvalue to be differentiated is repeated, the corresponding right and left
eigenvectors are both degenerate and, mathematically speaking, for any non-
singular n x n matrices o and 8, Xy = Xypo and Yy = Y8 will also be the right
and left eigenvector subsets. However, it was concluded in previous literature
that, if the derivatives of the repeated eigenvalue are all distinct, under proper
gauge conditions (such as those given by equations (3) or (4a) and (4b), and (5))
only specific Xy and Y corresponding to unique o and f are differentiable and
thus have derivatives. Notice that condition (5) imposes a restriction on « and f:

plo=1,.
Let Ay(p), XoAp) and Yy(p) denote the continuously differentiable subsets of the
eigenvalues and the corresponding right and left eigenvectors, respectively.

Taking the dth partial derivative of A(p)Xy(p) = B(p)Xu(p)Ay(p) and letting
P — Do, one has

AX? =F,, (7)

where
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d k
! i X\ R (k)5 (d—k
A¥A-— B, F, & , _Bk-NxRIAD) _ g xR |
O 2R | L XA ;
AP AD _)BD, Ay =igl,, d=1,2,..., ®)

and where the parenthesized superscript ““(d)” represents the dth partial
derivative. The eigenvalue and eigenvector derivatives to be solved are governed
by equation (7) and the eigenvectors’ gauge condition.

3. A DIRECT METHOD WITH BIORTHOGONAL DECOMPOSITION

3.1. BIORTHOGONAL DECOMPOSITION OF EIGENVECTOR DERIVATIVES
Equation (5) results in

Iy = BXYT = XY'B. 9)
Define
Ay =diag(Ai, ..., A1, Apsts -5 AN),
Xy =] X1 [Xpst] - Xn), - Y= (il ¥l Yagal - [Yw)s

which are the complementary subsets with respect to the known eigensolution
Ay, Xy and Y. Then one has

A AT A AT
Iy =BXyY, +XpY})) = (XoY, + XpY})B,

which yields

def

R(/l()) def def

A AT T A AT T
Iy —BXyY, =BXyY,, L(l)=Iy—XyY,B=X,Y,B. (10a,b)
Clearly, under the biorthonormalization condition (5), matrices R(4o) and L(4o)
remain invariant though the eigenvector subsets Xy and Yy are degenerate. In
mechanics terminology, R(Jo) and L(4,) are often referred to as the right and left
projection matrices [17]. . .

Notice that the column vectors of Xy and Yy span the null spaces of matrices
A and AT, respectively, and hence the rank of Ais m® N n The singular
matrix equation (7) is consistent if and only if

AT

Y, F;=0 (orequivalently, Y;F,; = 0). (11)
Provided that condition (11) is satisfied, the solution set of equation (7) is given
by

X = X8, + X\ (12)

In the above equation, S, is an n x n coefficient matrix to be determined, and
XS, represents the homogeneous solution part which is the linear combination
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of the differentiated eigenvectors. The particular solution part in equation (12),

X(g), can be written as [18]

X\ = CU0)Fa VC() € A{1}, (13)

where A1} (C(L) ACU)A = A, Clg) €€}, which s referred to as the
generahzed I-inverse set of matrix A [18]. Notice that the generahzed l-inverse of
A, C(4p), is not unique, nor is the above particular solution X

Let G(4 ) L()LO)C(/IO)R(AO) YC(4g )EA{I} In virtue of

AXy = (A — 1oB)Xy = BXy(Ay — Al,),
ATY) = (AT — 4BYY, = BYY(Ay — Jol,)
it is easy to verify that
G(o) = XyY}BC()BXy Y},
= Xy (Ay — JoL,) 'YTAC(A)AXy(Ay — JoL,) YT

X/y/

Xp(Ay — JoL,) ' YT = Z RN (14)
ﬁél~
and hence
AG(g)A = AXp(Ay — Jol,) ' YTA
=BX;Y A =R(})A
= (Iy—BXyY])A = A. (15)

Obviously G(4) is an invariant generalized l-inverse of A. In the following part
of this paper the notation X(Ud) is assigned to the special particular solution given
by

X = G(Jo)Fq (16)

ie.,
X/ = L(40)C0)R (20)Fa (172)
= Xp(Ay — oL,) 'YTF,, (17b)

which is uniquely determined and falls into the space spanned by the column
vectors of X. The biorthonormal condition then yields

&(d)
Y BX; =0. (18)

Such a biorthogonal decomposition of the eigenvector derivatives simplifies the
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subsequent derivations as well as the practical computations and, more
importantly, exposes the intrinsic relation between the so-called direct methods
and the modal expansion methods. Actually, the major difference between these
two kinds of methods is in the computation of 5((5). As one will see later on, 5(([5[)
can be either solved by using equation (17a) (direct method, i.e., to directly solve
the generalized 1-inverse from known information), or solved by using equation
(17b) or its asymptotic expansion (modal method).

3.2. A DIRECT METHOD FOR GENERAL NON-SELF-ADJOINT SYSTEMS

First, the differentiable eigenvector subsets X and Yy need to be determined
from the given eigenvectors Xy and Yy. Setting d = 1 in equations (11) and (8),
after simple derivations one has

AW =YTAOX,. (19)

In virtue of Xy = XUa, Y, = \A{Uﬁ and %o = I,,, one obtains an n-order standard
eigenproblem and its adjoint problem as

Dz =aAl), DT =pAY, (20a, b)

ef &T < . . . .
where D, def YUA(I)XU. Equations (20a) and (20b) give the first order derivatives

of the repeated eigenvalue, and the eigenvector matrices o and f will designate
the differentiable right and left eigenvector subsets X, and Y. It is still worth
mentioning the case in which repeated eigenvalues arise in eigenproblems (20a)
and (20b). In that case some eigenvectors of equations (20a) and (20b) are
degenerate and one will still be unable to determine the differentiable
eigenvectors. In fact, eigensolution sensitivity reflects the eigensolution
perturbation due to system parameter perturbation. Equal eigenvalue derivatives
show that the perturbed eigenvalues are still repeated and they fail to separate
the originally degenerate eigenvector subspace. As demonstrated by Zhang and
Wang [15] and Friswell [16], in that case higher order eigenvalue derivatives need
to be solved until all the perturbed eigenvalues become distinct. In this paper
only the case in which all the eigenvalues of equations (20a) and (20b)
are distinct is considered, i.e., i}l) #+ /IECI) (Xj, k= 1,...,n, j#k). Then « and
p are both non-degenerative and the differentiable eigenvectors X, and Y, can
be uniquely determined by imposing the gauge c?lr)lditions (3), (4) and (5).

Next to be solved is the particular solution X;,". With d =1 in equations (16)
and (8) and recalling equation (19), one has

~ (1 . R
R = G()F) = ~Glia)(Iy — BXo YDA Xy = ~G(20)AVX,

= —L(4)C(i0)R(29)A Xy (21)

It was Nelson [13] who first proposed an efficient algorithm for extracting a
particular solution of the eigenvector derivative by exploiting the property that
the null space of A is known a priori, and then a direct method for calculating
the eigenvector derivatives was completed by employing the eigenvector’s gauge
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condition. Mills-Curran [14] extended Nelson’s method to a self-adjoint system
with repeated eigenvalues. A similar algorithm for solving a particular solution
for a non-self-adjoint system with repeated eigenvalues was given by Tang et al.
[19]. The algorithm is now modified to yield the particular solution in the form
of (21):

(1) Find n linearly independent rows in Xy and eliminate the corresponding
n columns of matrix A and 7 rows of the right-hand side —R(2)AVX .

(2) Find n linearly independent rows in Y and eliminate the corresponding n
rows of matrix A. It was proved [19] that the remainder of A must form a
(N —n) x (N — n) non-singular coefficient matrix.

(3) Solve the (N —n) non-singular simultaneous equations and then fill the
entries corresponding to the eliminated rows with zeros.

(4) Pre-multiply the obtained result by L(4y) and one then has the solution
given by equation (21).

Finally, one needs to find the coefficient matrix S; in the homogeneous
solution part. With d = 2 in equations (11) and (8), after simple calculations one
has

AY = YLADXy + 240X - 2BUX AL - 2BXAL).

Setting d = 1 in equation (12) and inserting it into the above equation, recalling
equations (21) and (18), one obtains

SIAY — AYS; +IAD = I (A® —2A0WGAD — 2BOX, YTAD)X,.  (22)

Therefore, the off-diagonal elements of matrix S; and the second order
derivatives of the repeated eigenvalues are, respectively,

yi(Ay — 2ANGAD — 2BUX,YTAD)x,
2080 — 2

J

Sijk = . JFEk jk=1,2....n

(23)

2 = v/ (Ay —2A0WGAW — 2BOX Y[ AW)x;, j=1,2,...,n  (24)

where temporarily we let y; and x; represent the jth column vectors of X, and
Yy, respectively. The diagonal elements of matrix S; will be solved by using the
gauge conditions given by equation (3) or (4). Differentiating equations (3) and
(4a) with respect to p and then letting p — p, results in

x'(B+BN)x!" = —x"BVx;, Re(x'x\")=0. (25a, b)

Let x ) denote the ith column vector X( : Recalling equations (12), (3) and (4a),
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from equations (25a) and (25b) one has, fori =1, 2,---, n,

1 n
S =~ |x'BUx; +x[ (B + BN + 3" xT (B +BT)x;S; ﬁ] , (26a)
=1
i#i
Re(Sli,-) = —Re (X;;(l-l) + Z X?XjSlﬁ) . (26b)
J=1
J#

Notice that in equation (26b) corresponding to condition (4a), only the real parts
of S}, can be solved. Indeed, this is due to the fact that condition (4a) can only
gauge the modulus of a differentiated eigenvector. Recalling that the
complementary condition (4b) requires that the maximum component of
x{p), denoted by x,(p), remains real in the vicinity of p = p,, which implies
that Xig is also real, one can obtain the imaginary part of S;; as

Im(Sl,-,-) = —Im ()?fl(;) + Z quSU,') /X,'q. (27)
J=1
J#

Now the homogeneous and particular solution parts of equation (12) with
d =1 are both solved; see equation (18). A direct method with biorthogonal
decomposition is then completed.

4. MODAL METHOD OBTAINED BY ASYMPTOTIC EXPANSION

In virtue of equations (12), (21) and (17b), the first order eigenvector
derivatives can be alternatively expressed as

Xy =X + XuS1 = —G(20)AVXy + XS,
= XV(AV — )volm)_lY}r/A(l)XU + XU(xsla (28)

which coincides with the modal expansion result given by Juang [5]. In fact, the
only difference between the direct method presented in the preceding section and
the modal expansion method is the solving strategy for the particular solution
f(((}) which falls into the space spanned by the column vectors of X,. In view of
modal expansion, an exact solution for the eigenvector derivatives requires that
all the eigenvectors of the original system are known a priori, which cannot be
the case in practice. This has resulted in some approximate techniques by means
of modal truncation and then compensating. In this section, an asymptotic
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expansion of the invariant generalized 1-inverse G(/) is derived and then used
to obtain approximate eigenvector derivatives. It is shown that, for the
expansion to be convergent, one needs to know all the lower order eigenvectors
at least up to the one corresponding to 4, (see equation (6) for the definition
of h).

Suppose equation (1) has r-fold (r = 0) zero eigenvalue, and the corresponding
right and left eigenvector subsets are denoted by Xz and Y. Recalling equation
(14), analogously one can obtain

(Iy — XzYEB)C(0)(Iy — BXgYL),
GO0)=4¢ & ﬁ (29)

b

Jj=r+1 lj

where the first expression suggests a practical method for the computation
of G(0) which is often called the elastic flexibility matrix in mechanics
terminology [17], and the second expression will be used in the following
derivation. From the biorthonormalization condition (5), it is easy to verify that,
fork=20,1,2,---,

Generally, in a practical dynamic analysis, the number of degrees of freedom
of the system is very large but the cigenvalue A, of interest often falls into the
lower-frequency segment. Therefore, one can always find an integer g(ly) >h
such that Vj > g(4¢), |40/4] < 1. Recalling equation (14), one can express G(4o) in
terms of a convergent power series,

k
,y, [ Lo </10) <ﬂ )
+ -+ + +--

J=

=H_,+Hy+H +Hy+ -+ Hp + -, (30)

where
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Ho= ), —T0 A 2
=1 Y= 0 j=r+1 79 40
JFEI~h J#EI~h

j=g(%0)+1 J=r+1 ij Jj=r+1 )“/ 0 |
JEI~h
N T N xyT g0) y 4T
Xy X;¥; X;y;
Hisio 3 S=hd Ji-hd o
J=g(Z0)+1 7Jj j=r1 % =
X, YT! g(k) x;yT
oGOBIGO) — | =7 470 D =5 |.
0 j=r+1 7%
I~
N N xyT gU0) 5T
k /y/ _ 1k X/y] k X/y/
=% Z iHl — % W_ 0 k1
J= (} )+l J Jj=r+17 Jj=r+17%Y

Let E, be the partial sum of the series; one has

O 1 L SRR T HE SPREI el

= 4 40 J=0
1 A 2 2
+Z [ ( +}~2+)3+ +;k+1
Jj=r+l1 i
JEI~h
XRYT (k +1 XUU k 8(%) ij_T o k+1
- + [4G(0)BYG(0) + —(=] . (D
Ao ; ]z’; Aj— 4o \ 4
J#EI~h

Hence, provided all the lower order eigenvectors (up to the one corresponding to
’g(ip)) are known, the kth approximation for the particular solution of the
eigenvector derivatives has the form
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X 2B (—AXY)

XpYRA X k+ X A” £
XA Xy e+ DXy © D IHGOBIGO-AX)
g(4o) X; T k+1
jy] )\.0 A“)
> L _AX). 2
Jj= r+1
J#EI~h

After obtaining the approximate particular solution of the eigenvector
derivatives, one can solve for the homogeneous solution part by using equations
(22)—(27) derived in the preceding section. Notice that with sufficiently large k,
the error or of the present modal method will diminish to zero.

The present modal method virtually covers all the previously developed
modal-expansion based methods as special cases. If the eigenvalue to be
differentiated is a distinct one, combining equations (32), (26a) and (12) and
letting » = 1 one can get the so-called family of modal methods proposed by
Akgiin [7]. As noted by Akgiin [7], if one lets k = —, i.e., excluding all the higher
eigenvectors without compensating, one will have the truncated modal method
result. If one lets kK = 0, one can get Wang’s modified modal method (or referred
to as the modal acceleration method). Higher order compensation can be
achieved if one applied larger k. On the other hand, no additional effort is
needed if the original system has rigid-body modes. Equation (32) also implies a
scheme of explicit iteration, which is similar to the iterative procedure proposed
by Zhang and Zerva [11, 12]. In summary, the present modal method, which can
be used to treat any non-defective eigenproblem with repeated eigenvalues, is the
most general modal method so far developed.

5. ILLUSTRATIVE EXAMPLE

In this section a numerical example is given to demonstrate the validity of the
presented formulae. The direct (exact) and modal (approximate) methods are
compared, and the issue of computational efficiency is addressed. All results are
obtained by using MATLABS.1.

Suppose one is given the following system,

1 00 0 -1 1 0 1
0100 -1 1 0 1
001 0 -1 1 0 1
0 00 10 -1 5 0 0
AP)=15 63 4 10 3 0 10| Bw)=I
I 11 1 1 100 10
20 00 0 0 0 g 20
(3 74 5 11 13 0 20]
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01 0 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
W, v |0 0 -1 0 0 0 0 0
ATP)=14% 0 0 0 0 1 0 of
0 0 0 0 -1 0 0 0
0 0 0 0 0 0 0 1
00 0 0 0 0 —1 0]
BY(po) =0, i=1,2,...; AD(p)=0, i=273,...,

where ¢ is an adjustable parameter and at this moment is set to ¢ = 5. The
original system has a two-fold eigenvalue /,= 1-0, whose corresponding
biorthonormalized right and left eigenvectors are, respectively,

[ —2-1192650e — 01 —2-2191360¢ — 01 ]
6-1062716e — 03 7-8322447e — 02
2:1623978e — 02 —2:2191360e — 01

Xy = 1-8419626e — 03 3:6550475e — 03
1-6577663e — 02 3-2895428e — 02 |
—8-:0758984e — 17 —2-1051200e — 16
9-7674421e — 01 9:4509086e — 01
1-6577663e — 02 3-2895428¢ — 02 |
[ —4-2817296e + 00 —2-2130128e — 01 ]
3-1086245¢ — 15 3-3307127e — 00
4-2817296e + 00 —3-1094114e + 00
V= 8:0987389%¢ — 16 —4-7536980e — 17 ,

1-2173526e — 15 —5-6939838e — 16
6-8585474e — 16 —1-4599762¢ — 15
0 0

| —8-:5798454e — 16 4-4007863¢ — 16 |

The derivatives of this eigenpair will be computed by using the two different
approaches proposed in this paper.

First, the direct method developed in the third section is used. In the direct
method, the above information is sufficient for sensitivity analysis, i.e., only the
eigenvalues and the eigenvectors to be differentiated are needed in this approach.
Using equations (20)—(27) in sequence, one can obtain the differentiable right
and left eigenvectors,
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Xy =

[ —2:1422098e — 01 + 1-7469047e — 02i
8:3370652e — 02 — 7-:5052202e — 021
—2-4061602e — 01 + 2:5168368¢ — 01i
3:7146635¢ — 03 — 1:9410052e — 031
3-:3431972e — 02 — 1-7469047e — 02i
—2-1680813e — 16 4 1-3719260e — 161
9-0394506e — 01

3-:3431972e — 02 — 1-7469047¢ — 021

Yy =

[ —2-:4289664¢ + 00 + 2:4085287¢ + 001
1-7411601e + 00 — 1-9622168e — 011
6-8780633e — 01 — 2-2123070e + 001
4-1269812e — 16 — 4-:5029809¢ — 161
3-:6003785e — 16 — 6-4752511e — 161

—3-9267073e — 16 — 2:9770255¢ — 161
0
| —2-3348606e — 16 4 4-5408874e — 161

J. TANG AND W.-L. WANG

—2-1422098e — 01 — 1-7469047¢ — 021
8:3370652e — 02 + 7-5052202¢ — 021
—2:4061602e — 01 — 2-5168368e — 011
3:7146635¢ — 03 4 1:9410052e — 031
3:3431972e — 02 4 1-7469047¢ — 021
—2-1680813e — 16 — 1:3719260e — 161
9-0394506e — 01

3-:3431972e — 02 + 1-7469047e — 02i |

—2-4289664e + 00 — 2-4085287e + 001 T
1-7411601e + 00 + 1-9622168e — 01i
6-8780633e — 01 + 2-2123070e + 001
4-1269812e — 16 + 4-5029809¢ — 161
3:6003785¢ — 16 + 6:4752511e — 161
—3-926707e — 16 + 2-9770255¢ — 161

0

—2-3348606e — 16 — 4-5408875¢ — 161 |

and then the first and second order eigenvalue derivatives,

A _ 0-3460869565217411 + 0-30109566774401438i
v 0-3460869565217411 — 0-3010956677440148i |’

AR — —1-993970323662362 + 1-6293906337786911
v —1-993970323662362 — 1:629390633778691i |’

and finally the right eigenvector derivatives
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(n _
Xy =

[ 4:2046858e — 01 +9-1150201e — 021  4-2046858e — 01 — 9-1150201e — 021
—9:9724949¢ — 02 — 1-7656000e — 011  —9-9724949¢ — 02 + 1-7656000e — 011
1-1328952e + 00 + 7-4747461e — 011 1-1328952e + 00 — 7-4747461e — 011
—2:1527791e — 01 4+ 1-:0081471e — 021 —2-1527791e — 01 — 1-0081471e — 02i
7-0603519e — 02 — 7-6232028e — 021  7-0603519e — 02 4 7-6232028e — 021
3-5387175¢ — 01 + 1-7033024e — 021 3-5387174e — 01 — 1-7033024e — 02i

1-9769911e — 01 1-9769911e — 01
L —4-4603782e — 01 — 7-6668051e — 021 —4-4603782e — 01 4 7-6668051e — 02i

To verify the obtained eigenvalue and eigenvector derivatives, they are used to
approximate the eigensolution of the perturbed matrix pair (A(p), B(p)). In fact,
Ay(p) and Xy(p) can be approximated by the truncated Taylor series in the
following manner:

2
€
Ay(p)|approxx Aol + SA(J) + EA(L%)’ Xu(p)lapprox~ Xy + 8X(l}>,

where ¢ & p — po- Figure 1 shows the difference between the exact eigensolution
and the approximate one obtained by way of sensitivity analysis. Since the
original repeated eigenvalue splits into a pair of complex conjugated eigenvalues,
only the results of one perturbed eigenvalue and its eigenvector are plotted here.

104

10°°

106

1077

101 102 103 104
€=p-p,
Figure 1. Difference between the exact perturbed eigensolution and the approximate one

obtained by sensitivity analysis: ----,  [A(P)exact — AD)approxl/|[AP)exactl;s ——»  [|X(P)exact —
x(p)appruxH2/Hx(p)exact”Z-
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Clearly, the difference diminishes rapidly as ¢ decreases. The validity of the
presented direct method is then justified.

The modal method, on the other hand, requires the knowledge of all the lower
order eigenvectors at least up to the one corresponding to /,.; (the eigenvalue
next to Ag). Actually, in this example the complete eigenvalue set of the original
system is

J. TANG AND W.-L. WANG

A = diag(0-0, 1-0, 1-0, 1-:6028948, ¢, 8-:3210326 +2-5437262i, 32-7550401).

Here it is assumed only the four lowest order eigenvectors are available, and
firstly it is assumed ¢ = 5 is the lowest unavailable eigenvalue. The first and

fourth eigenvectors are, respectively,

X| =

Xy =

2-:5684747¢ — 01 |
2:5684747¢ — 01
2:5684747¢ — 01
—2:0215643e — 01
1-8182625¢ — 01
4-4067810e — 01
5:1770371e — 01

| —5-1569933¢ — 01 |

[ —4-2097315¢ — 01 ]
—4-2097315e — 01
—4-2097315e — 01
1-1328386e — 01
3:1675014e — 01
—1:2690127e — 01
5:5048561e — 01

1-8984888¢ — 01 |

-

-

Y1

Y4 =

[ —4:4090189%¢ — 16 ]
—1-5153578e — 15
1-7998107e — 15
2:0687479¢ — 16
8-7857737e — 01
8-7857737e — 01
0

| 87857737 — 01 |

[ —1-3849739%¢ — 01 ]
—1-9692185e + 00
—59617766e — 01
7-5664826e — 02
2:1040979¢ — 01
9-5470964¢ — 01
0

| —4-8634286¢ — 01 |

Notice the original system has a rigid body mode. Using equations (29)—(32) and
then equations (22)—-(27), one can solve for the approximate eigenvector
derivatives. The kth (k= —1, 0, 1, 5) approximation of the right eigenvector
derivatives and the corresponding relative error are, respectively,
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1
X(U) |k:71 =

[ 3:9075913e — 01 + 6:5878510e — 021
—8-1568828e — 02 — 1-7733796e — 01i
1-0716723e + 00 + 7-4790469¢ — 011
—1:6090894e — 01 — 1:6625710e — 02i
7-1089663e — 02 — 6:8107287e — 021
3-:3499602e — 01 + 1-:5937830e — 021
1-7366558e — 01
| —4-6442740e — 01 — 6-9638504e — 021

1
1_Xg)

|| X5 |k:7
x5

exact ”2
(1
XU ’k:o =

[ 4-1608745¢ — 01 + 8:5626028e — 02i
—9:6045488e — 02 — 1-7613975e — 011
1-1219471e + 00 + 7-4572545¢ — 01i
—2-0956226e — 01 + 7-9010801e — 03i
7-0636467e — 02 — 7-4355391e — 021
3-:5320655¢ — 01 + 1-6397787¢ — 021
1-9409018e — 01
| —4-:4667007¢ — 01 — 7-5426651e — 021

1 1
I x ]y — x5

1
x5

|exact HZ

error|,_, =

exact ”2

1
X(U) ’k:l =

[ 4:1969650e — 01 + 9-0026313e — 02i
—9-9000001e — 02 — 1-7641961e — 011
1-1307925e + 00 4 7-4700310e — 01i
—2-1474295¢ — 01 + 9:9567968¢ — 03i
7-0595376e — 02 — 7-5907796e — 021
3-5392371e — 01 4- 1-6901918e — 021
1-9706044¢ — 01
| —4-:4599402e — 01 — 7-6474924e — 021

1 1
xS x)

error,_, = | xgl)]

exact ”2
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3:9075913e — 01 — 6:5878510e — 021 ]
—8-1568828e — 02 4 1-7733796e — 011
1-0716723e 4 00 — 7-4790469¢ — 011
—1:6090894e — 01 4 1:6625710e — 02i
7-1089663e — 02 + 6-:8107287¢ — 021
3-:3499602e — 01 — 1-5937830e — 021
1-7366558e — 01
—4-6442740e — 01 + 6-9638504e — 02i

2
|exact H = 6-5358385¢ — 02,

4-1608745¢ — 01 — 8-:5626028e — 021 T
—9-6045488e — 02 4 1-7613975¢ — 011
1-1219471e + 00 — 7-4572545¢ — 011
—2-0956226e — 01 — 7-9010801e — 031
7-0636467¢ — 02 4 7-4355391e — 021
3:5320655¢ — 01 — 1:6397787e — 021
1-9409018e — 01
—4-4667007e — 01 4 7-5426651e — 021

= 9-8708899%¢ — 03,

4-1969650e — 01 — 9-0026313e — 0217
—9-9000001e — 02 + 1:7641961¢ — 011
1-1307925e + 00 — 7-4700310e — 01i
—2-1474295e — 01 — 9-9567968e — 031
7-0595376e — 02 + 7-:5907796e — 02i
3:5392371e — 01 — 1:6901918e — 021
1-9706044¢ — 01
—4-:4599402e — 01 + 7-6474924¢ — 02i |

2
exact I~ _ 1.7818865¢ 03,
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1
X(U) |k:5 =

[ 4:2046736e — 01 +9-1148497e — 021  4:2046736e — 01 — 9-1148497e — 021
—9-9723881e — 02 — 1:7655970e — 011 —9-9723881e — 02 + 1-7655970e — 011
1-1328919¢ + 00 + 7-4747388e — 011 1-1328919¢ + 00 — 7-4747388e — 011
—2:1527793e — 01 4+ 1-:0081552e — 021 —2-1527793e — 01 — 1-0081552e — 02i
7-0603765¢ — 02 — 7-6231803e — 021  7-0603765¢ — 02 4 7-:6231803e — 021
3-5387181e — 01 + 1-7032985¢ — 021 3-5387181e — 01 — 1-7032985e — 02i

1-9769809¢e — 01 1-9769809e — 01
L —4-4603751e — 01 — 7-6667865¢ — 021 —4-4603751e — 01 4 7-6667865¢ — 02i

M e
error],_o = 152 li=s =% lewat 7 _ 5 71613006 — g6,

1
x5

exact ||2

The eigenvector derivatives obtained by the direct method are now referred to as
the exact solution. Only one error index is needed because the two eigenvector
derivatives are complex conjugates. Clearly, when the first unavailable eigenvalue
is ¢ =15, the 5th approximation of the eigenvector derivatives already has
satisfactory accuracy.

The computational efficiency of the present direct and modal methods still
needs to be discussed. The advantageous feature of the modal method is
obvious. The most time-consuming steps in the above two methods are solving
G(Jy) (in the direct method) and G(0) (in the modal method), respectively.
Observe equations (21) and (32). While the direct method requires solving for
different G(4y) if a number of eigenvectors corresponding to different eigenvalues
are to be differentiated, only one G(0) is needed for the modal method in that
case. The disadvantage of the modal method is the error induced by
approximation. As pointed out in the preceding section, the modal method uses
E, to approximate the generalized l-inverse G(4¢). With k increasing, E, will
eventually converge to G(Jy). Observing equations (30) and (31), one can find
that the convergence rate of the modal method depends on the ratios of the
differentiated eigenvalue to the unavailable eigenvalues, and primarily depends
on the ratio of the differentiated eigenvalue to the lowest unavailable eigenvalue.
Actually, when k increases, the error between E; and G(/,) will decrease mainly
at the rate of (io/ig(go)H)"“. This effect is simulated in Figure 2, where we let
the adjustable parameter ¢ in the present numerical example be 2, 5 and 8,
respectively. In each case ¢ is the lowest unavailable eigenvalue, and the
error between E, and G(/) is plotted. The error reduces roughly in the order of
(1/g)**!, in this specific example (4, = 1-0), and the convergence rate increases
quickly as ¢ increases. The ratios of the differentiated eigenvalue to other
unavailable eigenvalues, on the other hand, have less effect on the convergence
rate. Figure 3 shows different convergence rates corresponding to ¢ = 9, 10, 30
which represent different second lowest unavailable eigenvectors. Though ¢
differs significantly, the convergence rates are roughly the same. In all, the ratio
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100
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1073

1074

107

1076

1077 \ \ \ \ \

Figure 2. Relative error between the exact generalized I-inverse G(Z4o) and its kth approxi-
mation E;, ||G(Zo) — E||2/||G(A0)||2, versus k (= —1, 0, 1, 2, 3, 4, 5). Here ¢ is the lowest unavail-
able eigenvalue.

40/ %g(2)+1 Plays a key role in eigensolution sensitivity calculation. It decides the
convergence rate if the modal method is used, and therefore decides which one
between the direct and modal methods is preferred when a real system is to be
analyzed.

101

1072

1073

1074

10

1076

1077

Figure 3. Relative error between the exact generalized 1-inverse G(4o) and its kth approxi-
mation Ey, [|G(o) — Ell2/||G(Ao)]|2, versus k (= —1, 0, 1, 2, 3, 4, 5). Here ¢ is the second lowest
unavailable eigenvalue.
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6. CONCLUDING REMARKS

A unified theory for the calculation of eigensolution sensitivity is developed
for general non-defective eigenproblems with repeated roots. A direct method
with biorthogonal decomposition is first presented. The asymptotic expansion of
this direct method then results in a modal-expansion based method. The intrinsic
relation between these two kinds of methods is exposed.

Generally speaking, if only one eigenvalue and its eigenvectors set are to be
differentiated, the direct method should be used as it requires least
computational effort and gives accurate results. When a group of eigenvalues
and their eigenvectors are to be differentiated, the modal method presented in
this paper becomes more and more preferable as the number of (distinct)
eigenvalues to be differentiated increases, provided all the lower order eigen-
vectors are available. The convergence rate of the present modal method is
shown to mainly depend on the ratio of the differentiated eigenvalue to the
lowest unavailable eigenvalue. The error between the approximate modal
method solution and the exact solution diminishes roughly at the rate of
(/lo/ﬂug(%)ﬂ)kﬂ. If the lowest unavailable eigenvalue Ag(;,)41 is not close to o, the
modal method can easily achieve satisfactory accuracy.
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APPENDIX: NOMENCLATURE

A(p) and B(p) parameter-dependent complex matrices
A

o

see equation (8)

A@ dth derivative of A, see equation (8)

F, see equation (8) .

G(Lo) invariant generalized 1-inverse of A

Iy Nth order identity matrix

L(4o) left projection matrix corresponding to 4o, see equation (10b)

R(%) right projection matrix corresponding to 4o, see equation (10a)

Sy coefficient matrix in the homogeneous solution part of the
eigenvector derivative

Xand Y complete right and left eigenvector sets

Xy and Yy differentiable right and left eigenvector subsets corresponding to

XU and YU
X(Ud) and Y(Ud) dth derivative of Xy and Yy
i(l‘]{) particular solution part of the eigenvector derivative, see
. . equations (13) and (16)
Xy and Yy eigenvectors to be differentiated . .
Xy and Yy complementary eigenvector subsets with respect to Xy and Yy
x(p) and y(p) right and left eigenvectors
Ay = Aol the n-fold eigenvalue to be differentiated
AY dth derivative of Ay

Ay complementary eigenvalue subsets with respect to Ay
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